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Abstract. We calculate the dynamical structure factors of a two-dimensional Heisenberg
antiferromagnet at 7" = 0, 10 order 1/(25)2, taking careful account of the umklapp
processes. We show ihai, for the transverse spin pan, the terms of order 1/(28)?
give rise to a broad sideband peak of three-magnon excitations, whose intensity is small
but not negligible. For the longitudinal spin part, the terms of order 1/(25)? modify
noticeably the spectral shape of the continuum of two-magnon excitations as a function
of frequency. These results could be observed in future neutron scattering experiments.

1. Introduction

There has been growing interest in quantum antiferromagnets after the discovery
of high-temperature superconductors, since the undoped mother materials such as
La,CuO, are well described by a square-lattice spin-} antiferromagnetic Heisenberg
model. It is now widely accepted that this system exhibits long-range Néel order at
T =0, in spite of large quantum fluctuation {1-3].

Under the presence of Néel long-range order, the 1/5 expansion may work well for
treating large quantum fiuctuations, where S is the magnitude of spin. Recently, the
present author and Watabe [4], Castilla and Chakravarty [5], Canali, Girvin and Wallin
[6] and the present author [7] have calculated several thermodynamic quantities, up
10 order 1/(25)2. The values of order 1/(25)* are not large, indicating that the
linear spin-wave (LSW) theory [8,9] provides quite satisfactory estimates, consistent
with the results given by other methods {10-13],

In this paper, we focus our attention on the dynamical structure factors, which
have not yet been calculated systematically in the 1/ S expansion. The present author
and Watabe tried to calculate the dynamical structure factors in the 1/ expansion [4],
but the treatment of the umklapp processes, which may have important contributions,
was not correct. Paying careful attention on those processes in this paper, we calculate
the dynamical structure factors for ‘staggered’ spins up to order 1/(25)2, for both
the transverse-spin part St-(k,w) and the longitudinal-spin part S**(k,w). It is
shown that, for the transverse-spin part, the terms of order 1/(25)? give rise to a
broad sideband peak due to three-magnon excitations in the constant-k plot, where
the intensity of the sideband is one order of magnitude smaller than the intensity of
the é-function peak arising from one-magnon excitation. In the constant-w plot of
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S+~ (k,w), the seccond-order contributions give rise to a structureless feature around
k = 0, in addition to the one-magnon peak. As for the longitudinal-spin part, the
leading term is of order 1/(25), where the function in the constant-k plot consists of
the energy continuum of two-magnon excitations with a threshold as a function of c,
at which the intensity diverges as k — 0. The contribution of order 1/(25)? is small
near the threshold frequency, but becomes considerable for large w and |k|, indicating
that the convergence of the 1/S5 expansion becomes poor for larger w and |k|. In
the constant-w plot, the first-order contribution gives rise to considerable intensities
around k = 0. The second-order contributions are found to be extremely small in
this plot. Furthermore, we calculate the instantaneous spin-correlation functions. We
show that they are noticeably reduced by the second-order correction. We expect that
these results could be revealed by future neutron scattering experiments.

In section 2 we express the Hamiltonian in powers of 1/(285) using the Holstein—
Primakoff transformation. We calculate the dynamical structure factors in section 3.
In section 4, we calculate the instantaneous spin-correlation functions. Section 5 is
devoted to the concluding remarks,

2. Hamiltonian

We consider a square-lattice spin-; antiferromagnetic Heisenberg model,

H=J)_5;-5; (2.1)
(i)
where (z, 7) indicates a sum over pairs of nearest neighbours. To the spin operators
S, and §,, we apply the Holstein—Primakoff transformation {14] defined by

S} =58-ala; (22)

SF = (S7) = V25£,(S)e, (23)

S;=-S+b;tp; (2.4)

S} = (87)t = v28b,1 £;(5) (2.5)
with

J(8) = (1-ng/29) P =1 §n J28 ~ }(n /25 4 (26)

where o, and b; are boson annihilation operators with the indices ¢ and j referring
to sites on the a (‘up’) and b (‘down’) sublattices, respectively. The n, is a;a; or
b.1b,. Substituting (2.2)-(2.6) into (2.1), we can expand the Hamiltonian in powers
of 1/(28). The terms of order 25 are quadratic in the boson operators, which may
be diagonalized by the following Bogoliubov transformation:

at =L at+m B, (2.7)
by = mkakT + €8s, (2.8)
with
6 = [(1+ €,)/2¢,)'/? m, = —{(1 - €,)/2€6,]'* = —z,, (2.9)

& = (13" Yo = cos(k, /2) cos(k, /2) (210)
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where a, and b, are defined by

1/2 1/2
a; = (%) ;ak eXp(ik . 7‘,‘) bj = (-]%r—) zk: bk exp(ik . rj) (2‘11)

with —-n < k, < 7, -1 < k, < m in units of 1 /(V2a) (a is the nearest-neighbour
distance). Then the Hamiltonian may be expressed in terms of the magnon operators
oy, B and their Hermitian conjugates:

H=Hy+ H +H,+ - (2.12)
with
Hy=JSz) (- 1)+ 52 cleytoy + 61 6,) (2.13)
k k
JSz -JS5z
Hy = FA Zk: elogtog + 8.18,) + 25N %6(;(1 +2 =3 = 4)0,£,6,8,
3
X [QIO‘;%%B{%; + 613‘614'6—16—ng§;4 + 401,614[3_2%31(2%4
+ (20l 8_j030,B(3), + 281 ,B_,8_,04 B3,
+alabal ol BB, + no)| @19
JSz
H2 = (25)2 ch(k)(a;eak + 'GL'B&:) + Cz(k)(a};ﬂt_k + ﬁ_kak) + - (215)
k

where 2 (= 4) is the number of nearest neighbours, and A = (2/N) Y, (1~ ¢,) =
0.1579, Abbreviations a; = ay,,b_y = b_4,, ¥;_» = Yg,_g, I, are used. The
Kronecker delta 65(1 + 2 — 3 — 4) represents the conservation of momenta within
a reciprocal lattice vector G. The explicit expressions for the vertex functions ng‘,
and the functions C;(k) are given in [7]. The first term in (2.14) comes out through
the procedure of setting the products of four boson operators in a normal product
form [15], while the quadratic terms in (2.15) come out through the procedure of
setting the products of six boson operators in a normal-product form [4].

3. Dynamical structure factors

We consider the dynamical structure factors for the ‘staggered’ spins, defined by

S*(k, 1) = (Q* (k,1)[Q*(k,0)]") (3.1)

S (kyt) = (Q%(k, 1)[Q% (R, 0)]") (3.2)
where

QME) = S2 (k) — S(k) A=+ or z (3.3)
with

2\'/? :
()
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3.1. Transverse spin part

From (3.1}, the Fourier transform of the transverse-spin part is given by

§*(k, w) = 25(4, — mg ) (~1/)

x Im[F,, (k,w) — Fyp(k,w) — Fg,(k,w) + Fsa(k,w)] (3.5)
where

F,,(kw)= --ifm dt e {T(Y}(k, )Y, (k,0))) (3.6)
with

YRy = [V (W) = [£.SF(k) — m, ST (K)]/(29)"? (3.7)

Y (k) = [V (R = [-m SF (k) + £,57 (k)]/(25)'/2. (38)

Here () denotes the average over the ground state, and T is the time-ordering

operator. Energy and frequency are measured in units of J .Sz in the following.
Equations (3.7) and (3.8) are expressed in terms of magnon operators after

applying the Holstein—Primakoff transformation and Bogoliubov transformation:

11
Y (k) = Do, — SN ; bk +2-3-4)0,0,6,0,
x (M8 _s050, + M elp.60 4+ ) (3.9)
11
Yi(k) = DBl — 525 D ba(k +2~ 3~ 4)6.66858n(ve)
234
X (M8 _poz0q + MGhaal gl 188+ (3.10)
where
M3 = —x, + sgn(vg)z sz, (3.11)
) . . . .
My, = 232, ~ SEN(716) 22, (3.12)
D=1-A5/28 - 1AS8(1+3A8)/(25)? (3.13)

with AS = (1/N)Zq(e;‘ — 1) = 0.19660, and G = k42— 3— 4. Substituting (3.9)

and (3.10) into (3.6), and using the perturbation theory (corresponding diagrams are

shown in figure 1), we calculate F, (k,w) up to 1/(25)%

F,,(k,w) = D*GY,(k,w) + G}, (k,w)(28)7*S2) (k,w) G}, (k, )
+1,,(k,w)GY, (k,w) + G) (k) (k,w)+ J,, (k,w)  (3.14)

where the G‘}w(k,w) are the unperturbed propagators,

Gholk,w) = [w— ¢, i8] (3.15)
Glsk,w) = GY%, (k,w) =0 (3.16)
Gaplk,w) = [-w— ¢ +16]7" §— 0t (3.17)
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(@) $—<—x
P+ o
EN=

Figure 1. Diagrams for F™(k,w): (2)D*G,(k,w); (0)G%,(k, w)EX2(k,w)

GO, (k)i ()L (B, WYGL, (R, Wi (@YG (R, w) (B, w)i () Jywlk, w).  The

solid lines represent the unperturbed propagators. The crosses for (a) represemt D), while
1

the crosses for (¢) and (d) represent 1 or —Ekt’,quﬂp_inll'q’[H_p_q}/(25‘) or

—ttplalirp g sgn(ve)x M o /(25) with [k + p - q] being the reduced

value of k + p — g in the first Brillouin zone by a reciprocal vector G

and the self-energy parts 2B (k,w) are given by

S (k,w) = S0 (~k, ~w) = Cl(k)+( ) Zzezezt? ktp-q

(4) 2 (6) 2
y | Bepatirp-a | Bepginq ! (3.18)
w—ep—eq—ek+p_q+i6 w+t e, +€q+e,¢+p_q—~i5

@ (k,w) = S5 (<k,—w) = C(k)+( ) Zzezezeze,ﬂﬂ,_ sgn(ve)

x B B 2(fp + gt hip-q)
k,p.qk+p-ql “kp.q[ktp-qg) 2 (ep+ €q+ €pypqg)+

= (3.19)

The functions 1,,(k,w), fw(k,w) and J,,(k,w} correspond to figures 1(c), (d)
and (¢), respectively, and their explicit expressions are given in [7].

Equation (3.14) is inserted into (3.5) to obtain St~ (k,w). Apart from the encrgy
shift, it may be expressed as

S+ (k,w) = py(k)b(w — €;) + py(kyw) (3.20)
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where
2A 8 1 1
E) = — {124 - /1 —. 52
ok =256 - my (1= 2525 + i {-has 4 48)+ 258 (ke
2\? 2 92 52 p2
+ (j_\f) Zz‘ekepeqekﬂo—q
F2)
(4) (6) 2
X [ - | B'f-'p,q,[kﬂ’—ql 5 | Bk,p.q.[fe+r-q] |
(Ek—ﬁp—ﬁq—€k+p_q)2 (€h+ep+€q+€k+p-q)2
(1) {2)
+ Mk,p.q,[k+p—q] —sgn(7g) Mhm-q,[k+p—q'])

(
4 (6)
< ( Bk.p,q,[k'l‘P-q] + Sgn(WG)ma.c.[Hp—tﬂ )]}) (3.21)

€ — €~ €~ €hypgq kteptegtEip g

1 2\?
palk,w) = 25(4, — a,fn,,,)z(z—s)—2 (W) S b(w—ep—eg- Chypg) el o
Paq

(4) (6)
x -12—[2( —B"’PvQ-[k+p—‘l’} + Sgn(vG)Bk»Pvm[pr])
€ — €p— €q— €pip—qg ek+ep+eq+ekﬂ,,q

2
{H (2)
+ Mkv?l‘b [k+P—Q] - Sgn(ﬁYG) Mk,P,q,[k-‘-p—q]] * (3-22)

Here [k + p — q] denotes the reduced value of k + p — g in the first Brillouin zone
by a reciprocal vector G. The p,(k) diverges as 1/¢, with & — 0, due to the
divergence of the prefactor 25(£, — m,):. On the other hand, p,(k,w 2 €,)
remains finite with k — 0, since the divergence of the factor (£, — my)*6%
. 6

is compensated by the terms B,{:;! afktp-gl T sgn('rG)B,(c,:,,q‘[k o q][zx €] and

(D 73
k,P,Q.Ik-i-P—q] - Sgn(‘YG)Mk,p,q,[k.Fp_q] [“ Ek]'

We evaluate (3.21) and (3.22) by summing 25600 points of p and ¢ in the first
Brillouin zone. Figure 2 shows S*~(k,w) for S = 1 with k = (17x/160,17x /160)
and k = (1297/160, 1297 /160), as a function of w (constant-k plot). There appears
a broad sideband peak of three-magnon excitations, in addition to the é-function of
one-magnon excitation, Figure 3 shows S*~(k,w) for § = § with w = 0.2333, as
a function of k along a line of k, = k, (constant-w plot). The intensities around
k = 0, which arise from three-magnon excitations (p,(k,w)), are structureless and
weak.

3.2, Longitudinal spin part

Applying the Bogoliubov transformation to (2.2) and (2.4), we may express the z-
component of ‘staggered’ spin as

Q*(k) = 2(S — AS)(N/2)'/?6(k) + R(k) (3.23)
with

2 1/2 '
R{k) = — (N) Z£P£p+k [(1+ :cp:ﬂp+k)(a;,czp+k + 8L, k8 p)

— (2 + 2o (b + B_popin)]- (3.24)
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5.12

1.0 129
— k. = = —
3 A T
~ 0.2 0.418 0.157
! l L/_\
[ ] -

0.5 0 10 20 o 30

17
0.676 ky=ky = 160"
0 1.0 2.0 o 3.0

Figore 2. Dynamical structure factors for ihe iransverse-spin part St —(k,w) wiih
k = (17x /160, 177/160) and with k = (1292 /160, 1297 /160), as a function of w
(constant-k plot). S = 1. The straight vertical lines represent the 6-functions, whose
intensities are given by the attached numbers {pi{k)). The hisiograms represént the
sideband spectra pa(k, w). The intensities integrated over w are given by the numbers

attached to the histograms.

5t (kw)
5.12 5.12
1.0
w=10.2333
0.5
I
- 0.1 b 0.1

ky fal= kyf)

Figore 3. Dynamical structure factors for the transverse-spin part St—(k,w) with
1

w = (.2333, as a function of k along a line of k; = &y (constant-w plat). § = 3.
The straight vertical lines represent the é-functions, whose intensities are given by the
attached numbers [p1{tky) for kg = (177 /160, 17x/160)]. The histograms represent

pr(k, w = 0.2333).

Substitating (3.23} into (3.2), we may express the dynamical structure factor as

Sk, w)=2(8 - AS)’N&(k)&(u) + S (R, w) (3.25)
where

zz 2
(k,w) = —1\7 Zé(w —_ EP - €p+k)fepep+h«epaepf+h($p + .’Ep_'_k)(:L‘P, + J:p,+k)
P’

1
< (_;) Im[g wm,,,n,,p(k,w)] +-e (3.26)
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with
Wipip(k,w) = —i /_ : dt e (T[B_()ap,u(t)al,,,(0)8 .(0)]) (3.27)
Winap (k) = =i [~ 4t (T15_(Deyyn(08_p (0 (O)) (328)
Wop,1pr (ks w) = —i f_ _at e (Tlah(t)B! ,_y(t)al, (08 (0)) (3.29)
W%@&thLAfmwémuhMﬂﬁgkumﬂ _1(0) o (0))). (3.30)

The first term of (3.25) represents the magnetic Bragg scattering arising from the
antiferromagnetic long-range order, while S22 (k,w) describes the inelastic scattering.

mc
a g+

sy
ap+k apr+k
0 L >
¥ B pr
ap+k o pr
g B pr+ i Figure 4. Diagrams for W(k,w): {4) the lowest-
. order d1agrarns o Wi, 1p(k,w); (b)) the next-order
ap o+ kg diagam 1o W, oo {k, w); {£) the nextorder diagrams to
Wip, 2,,:(1: w) and Wy, 1Pa(k w). The solid lines with i p
and p p+ k represent the unperiurbed Green's funclions
GY.(p,w') and G% (p+ k,' + w), respectively. The
solid circles represent the interaction between magnons given
8P+ 8 by #1.

The perturbation theory is used to calculate W(k,w). For the lowest-order
diagram (figure 4(a)), we have
~ {1/ m)Im Wy, (k,w) = §(w - - k) for w>0. (3.31)
The other components are zero in thls order. For the next-order diagrams (figure 4(b)
and (c)), we find

— (1/m)Im Wy, (o (k, w)[8(w — €p = Epyr) = 8(w — €y — €pre)]
x Vip,lp'(k)/(ep + €p+k - fpi - €p'+k} (3.32)
-— (I/W)Im Wlp,zp’(k’w) =1 -—(1/11')11‘[1 szt'lp(k,u-’)
= '_5(("" — € — Ep-l‘-k) ‘/lp,Zp‘(k)/(ep + Cptk + Cpr + Ep‘+k) (3‘33)




1S expansion for dynamical structure factors 16273
with

Vipap (B) = Vapap(k) = =(1/N)(1/25)48, 100 Lol Bl o iiigp 334
Vipaar (B) = Vap 1 (B) = —(1/N)(1/28)88p 11 £ by 1y Bigh iy o frsklp (335

with [p + k] denoting the reduced value of p + k in the first Brillouin zone. From
(3.31)-(3.33), we obtain

zz 2
Sipe (b, w) = N Z 6w~ 2~ Spik )Epgp+k£p’£p'+k(xp + xp-l-h)(zp’ + mP"l-h)
PP!

x [6(p —P') + Wipip () (e + €ppn — € = €pria)
- 2V’1p,2p’(k)/(6p + Ep.].k + EPJ + €p"+k)] . (336)

In the last factor of (3.36), the first term may be called the first-order contribution,
and the second and the third terms may be called the second-order contribution,
since they correspond to the corrections of order 1/(2S) and of order 1/(25)? to
5%%(k,w), respectively. The sum over p’ for the second term is performed in such
a way as to give Cauchy’s principal value. Note that SZZ(k,w) is non-zero only for
w > €, and increases as 1/ | k | with | & |— 0 for w close to the threshold energy
€p-

We evaluate (3.36) by summing 25600 points of p and p’ in the first Brillouin zone.
Figure 5 shows S*#(k,w) thus evaluated for S = 1 with k = (177 /160, 17 /160)
and k = (1297 /160, 1297 /160), as a function of w (constant-k plot). The first-order
contribution is dominant for small | k [, and its integrated intensity decreases with
increasing | k | and w. The second-order correction, which is negative, becomes
important for large | k | and w, indicating that the the convergence of the 1/5
expansion becomes poor in this region. Figure 6 shows 5°2(k,w) for § = 1
with w = 0.2333 as a function of k along a line of k, = k, (constant-w plot).
There appears considerable intensity around & = 0. This arises from the first-order
contribution, while the second-order contribution is very small around k = 0, due to
a partial cancellation between the second and third terms in the last factor of (3.36).

4. Instantaneous spin-correlation functions

The instantaneous spin-correlation functions are calculated by integrating the
dynamical structure factors with respect to frequency w:

S0 = (@ WIQTEN) = pk) + [ " 0w py(kew) @1)
5% (k) = (Q* (K)[Q(R)]1) = 25 ~ AS)2N (k)

2
+5 ZEPEP'HE Lorlpran(®p + Tp )Ty + T )
rp’

X [é(p -p) - 2V1p,2pf(k)/(ﬁp Rk N e”"”“)J' 4.2)
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5%k, w) 5% (k,w)

8

w = 0.2333

FIRST
[‘\h\'\\ 4
wt

SR, “
? M gpeoxn 20
2
FIRST
¢ mw 2
10 SECOND 20 o v ol
1 ke fr(=kyfm}
Figure 5. Dynamical structure factors for Figare 6. Dynamical structure factors for the
the longitudinal-spin part S%*(k,w) with k = longitudinal-spin part $2%(k,w) with w = 0.2333,
(177 /160, 17=x/160) and with & = (1297/160, as a [unction of k along a line of kr = ky
1297 /160), as a function of w (constant-k plot). (constant-w plot). § = % Histograms a and
s = % The histograms with letters ‘FIRST b represent the first-order and the second-order

represent the first-order contributions, while the contributions, respectively.
histograms with letters ‘SECOND' represent the
second-order contributions.

The explicit expression for the last term in (4.1) is given by geting 1id of the factor
8w =€, — €y — €p1p o) from (3.22). We evaluate (4.1) and (4.2) by summing 6400
points of p and p' in the first Brillouin zone. Figure 7 shows St~(k) and $*(k)
thus evaluated for & = %: curves a and b represent S*~ (k) in Jowest order and
up to second order in 1/(25), respectively, while curves ¢ and d represent S*%(k)
evaluated to first order and up to second order in 1/(2S5), respectively. Note that the
spin correiations are suppressed Dy the second-order corrections in Dol UIe ansveise
and longitudinal-spin parts. Figure 8 shows the spherically averaged spin-correlation
function S(k) [= St~ (k) + S**(k)] for § = L. To lowest order in 1/(25), S(k)
is given by the LsW value, ie., 25(£, ~ m,)? when | k |[# 0. Up to order 1/(25)2,
the value remains very close to the LSW values, since the reduction caused by the
second-order correction in S+~ (k) is mostly compensated by 577 (k). This result is
consistent with the calculations by the variational method and by exact diagonalization
for finite clusters, which gives values very close to the Lsw theory [12].

5. Concluding remarks

We have calculated the dynamical structure factors up to order 1/(25)? in the 1/8
expansion, by using the Holstein—Primakoff transformation. The contributions of
order 1/(25)* are found, on the whole, not to be large, indicating that the 1/.5
expansion is a good asymptotic expansion for dynamical quantities. This result
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@b 5'+_(k) a: LSW

e, d: 5% (k) b: Up to
the second order

0 0.5 10 o 0.5 1.0

kefm(= ky/7) kyf7(= kyfx)
Figure 7. Instantancous spin-correlation functions. Figure 8. Inslanlaneous spin-correlation function
Curves o and b represent the lowest-order values  for the spherically-averaged part S(k} = S*—(k}
and the values up to order 1/(25)? for St—(k). +S5%*(k). Curve a represents the lowest-order
Curves ¢ and d represent the first-order value values, and curve b represents the values summed
and the values up to order 1/(25)% for $%%(k), to order 1/(25)%
respectively.

is consistent with the fact that the contributions of order 1/(25)% are small for
thermodynamic quantitics [4-7]. Although its intensity is not large, a broad peak of
sideband was found in S*~(k,w). This arises from non-linearity of the second-order
contributions. Such a non-lincar effect might be responsible for the high-frequency
tail found in two-magnon Raman-scattering spectra in La,CuQ, [16). For S#%(k, w),
the leading term is of order 1/(25), which gave the spectral shape composed of
the energy continuum of two-magnon excitations as a function of frequency. The
shape was found to be noticeably modified by the magnon-magnon scattering in the
second-order contributions. We expect that the deviation from the LSW values could
be observed by future neutron scattering experiments.

We have also calculated the instantaneous spin-correlation functions. We found
again that the leading-order contributions in both the transverse and the longitudinal
spin parts are considerably reduced by the second-order contributions. On the
other hand, as already pointed out by the present author and Watabe [4], when
the functions are averaged over the spin directions for S = %, the second-order
correction to St~ (k) are nearly cancelled out by 57#(k), making the averaged
values very close to the Lsw values, consistent with Monte Carlo calculations [2] and
exact diagonalization for finite clusters [12]. If the transverse and the longitudinal
components are separately measured, the deviations from the Lsw values could be
observed.
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