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11s expansion for dynamical structure factors in a 
two-dimensional Heisenberg antiferromagnet at zero 
temperature 

Jun-ichi Igarashi 
Faculry of Engineering, Gunma University, K i p .  Gunma 316, Japan 

Received 2 J u v  1992 in final form 29 September 1992 

AbslrscL We calculate the dynamical s1mUctur.e faaelors of a two-dimensional Heisenberg 
antiferromagnet at T = U. to order 1/(2S)2, taking careful account of the umklapp 
pmcesses. We show lhat, for Ihe tranweme spin pan, lhe terms of order 1/(2S)‘ 
give rise to a broad sideband peak of three-magnan excitations, whose intensity is small 
but not negligible. For the longitudinal spin pan, the terms of order I/(ZS)’ m d i k  
noticeably the spectral shape of lhe continuum of two-magnon mcitations as a function 
of frequency. Thge results could be o b m e d  in future neutron scattering aperimenot. 

1. Introduction 

There has been growing interest in quantum antiferromagnets after the discovery 
of high-tempemure superconductors, since the undoped mother materials such as 
La,CuO, are well described by a square-lattice spin-f antiferromagnetic Heisenberg 
model. It is now widely accepted that this system exhibits long-range Nee1 order at 
T = 0, in spite of large quantum fluctuation [l-31. 

Under the presence of N6el long-range order, the 1/S expansion may work well for 
treating large quantum fluctuations, where S is the magnitude of spin. Recently, the 
present author and Watabe [4], Castilla and Chakravarty [5],  Canali, Girvin and Wallin 
[6] and the present author [7] have calculated several thermodynamic quantities, up 
to order 1/(2S)’. The values of order 1/(2S)2 are not large, indicating that the 
linear spin-wave (LSW) theory [8,9] provides quite satisfactory estimates, consistent 
with the results given by other methods [1&13]. 

In this paper, we focus our attention on the dynamical structure factors, which 
have not yet been calculated systematically in the l / S  expansion. The present author 
and Watabe tried to calculate the dynamical structure factors in the 1/S expansion [4], 
but the treatment of the umklapp processes, which may have important contributions, 
was not correct. Paying careful attention on those processes in this paper, we calculate 
the dynamical structure factors for ‘staggered’ spins up to order 1/(25)’, for both 
the transverse-spin part S+-( k, w )  and the longitudinal-spin part Sa’ ( I C ,  U). It is 
shown that, for the transverse-spin part, the terms of order 1/(2S)‘ give rise to a 
broad sideband peak due to three-magnon excitations in the constant-k plot, where 
the intensity of the sideband is one order of magnitude smaller than the intensity of 
the 6-function peak arising from one-magnon excitation. In the constant-w plot of 
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St-( k , w ) ,  the second+rder contributions give rise to a structureless feature around 
k = 0, in addition to the one-magnon peak. As for the longitudinal-spin part, the 
leading term is of order 1/(2S) ,  where the function in the constant-k plot consists of 
the energy continuum of two-magnon excitations with a threshold as a function of w, 
at which the intensity diverges as k -, 0. The contribution of order 1/(2S)' is small 
near the threshold frequency, but becomes considerable for large w and Ikl, indicating 
that the convergence of the 1/S expansion becomes poor for larger w and Ikl. In 
the constant-w plot, the first-order contribution gives rise to considerable intensities 
around k = 0. The second-order contributions are found to be extremely small in 
this plot. Furthermore, we calculate the instantaneous spin-correlation functions We 
show that they are noticeably reduced by the second-order correction. We expect that 
these results could be revealed by future neutron scattering experiments. 

In section 2 we express the Hamiltonian in powers of 1/(2S) using the Holstein- 
Primakoff transformation. We calculate the dynamical structure factors in section 3. 
In section 4, we calculate the instantaneous spin-correlation functions. Section 5 is 
devoted to the concluding remarks. 

2. Hamiltonian 

We consider a square-lattice spin-: antiferromagnetic Heisenberg model, 

H = J Si. Sj 
( i9J1  

where ( i , j )  indicates a sum over pairs of nearest neighbours. To tbc spin operators 
Si and Sj ,  we apply the Holstein-Primakoff transformation [14] defined by 

with 

f < ( S )  = (1 - n,/2S)'/Z = 1 - in 2 c  /2s - g (nc/2S)2+ . , , (2.6) 

where ai and bj  are boson annihilation operators with the indices i and j referring 
to sites on the a ('up') and b ('down') sublattices, respectively. The n, is a i t a i  or 
b j t b j .  Substituting (2.2)-(2.6) into (2.1), we can expand the Hamiltonian in powers 
of 1/(2S). The terms of order 2 s  are quadratic in the boson operators, which may 
be diagonalized by the following Bogoliubov transformation: 
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where ak and bk are defined by 

112 112 
a; = ($) x a k e x p ( i k . r i )  bj = ($) x b k e x p ( i k . r j )  (2.11) 

k k 

with -r < IC, < T ,  -r < IC, < r in units of l/(t/za) (U is the nearest-neighbour 
distance). Then the Hamiltonian may be expressed in terms of the magnon operators 
a*, Pk and their Hermitian conjugates: 

H = H , +  HI + H2 + .. . (2.12) 
with 

(2.13) 

where z (= 4) is the number of nearest neighbours, and A = (2 /N)  x k (  1 - c k )  = 
0.1579. Abbreviations u l  = ak, ,b-2  = b-k2, y1-2 = ykI-k2, etc. are used. The 
Kronecker delta 6G( 1 + 2 - 3 - 4) represents the conservation of momenta within 
a reciprocal lattice vector G. The explicit expressions for the vertex functions B!s4 
and the functions C,(k) are given in [7]. The first term in (2.14) comes out through 
the procedure of setting the products of four boson operators in a normal product 
form [15], while the quadratic terms in (2.15) come out through the procedure of 
setting the products of six boson operators in a normal-product form [4]. 

3. Dynamical structure factors 

We consider the dynamical structure factors for the ‘staggered’ spins, defined by 

S’-(k:,t) = (Qt(k,t)[Q+(k.O)It) (3.1) 
S*’(k,i) = ( Q z ( ~ , ~ ) [ Q z ( k , O ) l t )  ( 3 4  

Q’(k) = Si(k) - St(k) (3.3) 

where 

X = + or z 
with 

(3.4) 
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3.1. Tronrvese spin part 

From (3.1), the Fourier transform of the transverse-spin part is given by 

~ + - ( k , ~ )  = 2s(e, - mk)2(-i/T) 
x Im[F,,(kw) - F,,(k,w) - F p , ( k , w )  + ~ , , ( k ,w) ]  (3.5) 

where 

F,,,(k, w )  = -i ll dl eiW* (T( Y:( k, t)Y; ( k ,  0))) (3.6) 

with 

Y,+(k) = [Y,-(k)I' = [e,S,+(k) - m,S,+(k)]/(2S)"2 
yP+(k) = [ ~ ; ( k ) ] +  = [ - m k ~ , + ( k )  + e , s , + ( k ) ] / ( 2 ~ ) ' / ~ .  

(3.7) 
(3.8) 

Here ( )  denotes the average over the ground state, and T is the time-ordering 
operator. Energy and frequency are measured in units of J S r  in the following. 

Equations (3.7) and (3.8) are expressed in terms of magnon operators after 
applying the Holstein-Primakoff transformation and Bogoliubov transformation: 

1 1  y,+(k) = D ~ ,  - -- 6,(k + 2 - 3 - 4)eke2e3e, 
2s 234 

where the G:, (k ,  w )  are the unperturbed propagators, 

@, , (h ,w)=  [w-ek+i6]- '  (3.15) 

C?mp(k,w) = C;,(k,w) = 0 (3.16) 

e p p ( k ,  w) = [-w - e ,  + is]-' (3.17) 6 - Ot 
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The functions I g u ( k , w ) ,  i ( k , ~ )  and J , , ( k , w )  correspond to figures l(c), (d)  
and ( e ) ,  respectively, and their explicit expressions are given in (71. 

Equation (3.14) is inserted into (3.5) to obtain S+-(k, w).  Apart from the energy 
shift, it may be expressed as 

(3.20) 

' Y  

S t - ( k , w )  = ~ i ( k ) s ( w  - e k )  + p * ( k , w )  
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where 

2 

+ M!~b,q.[htp-ql - sgn(rG)Mk,~.q,l*t~-ql] (2) ‘ (3.22) 

Here [k + p - q] denotes the reduced value of k + p - q in the first Brillouin zone 
by a reciprocal vector G. The p , ( k )  diverges as l / ek  with k -+ 0, due to the 
divergence of the prefactor 2S( lk  - mk)’. On the other hand, p2(k.w > ek) 
remains finite with 12 + 0, since the divergence of the factor (ek - mk)’t: 
is compensated by the terms Btb,q,[k+p-ql + Sgn(r,)Bh,p,q,[k+p-q]Ia (6) ‘k] and 

(1) (2) 
Mk,~,q.[ht~-ql - sgn(yG)Mh,~,q,[kt~-ql[a :kl’ 

We evaluate (3.21) and (3.22) by summing 25600 points of p and q in the first 
Brillouin zone. Figure 2 shows S+- (k ,w)  for S = with k = (17rr/160,17~/160) 
and k = (129rr/160,129rr/160), as a function of w (constant-k plot). There appears 
n h ~ ~ n f i  +j&nnfi pr& nf !hrpe-magnnn excitations, in addition to the &function of 
one-magnon excitation. Figure 3 shows St- (k ,w)  for S = 4 with w = 0.2333, as 
a function of k along a line of ICz = k,, (constant-w plot). The intensities around 
k = 0, which arise from three-magnon excitations ( p 2 ( k , w ) ) ,  are structureless and 
weak. 

3.2. Longifudinal spin part 
Applying the Bogoliubov transformation to (2.2) and (2.4), we may express the z-  
component of ‘staggered’ spin as 

Q ” ( k ) = 2 ( S - A S ) ( N / 2 ) 1 / 2 6 ( k ) + R ( k )  (3.23) 

with 

(3.24) 
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I 5.12 

k - k  - - 7 7  * -  ” -  160 

0 1.0 2.0 3.0 

F @ n  2. Dynamical structure factors for the transverse-spin pan S+-(k, w) with 
k = (17*/160, 17*/16O) and wilh k = (129rr/160, 129r/lM), as a function of w 
(conslanl-k plot). S = f .  The slraight venical lines represent the 6-functions. whose 
intensities are given by the attached numbers (p l (k ) ) .  The hislograms reprsenl the 
sideband spectra p i ( k ,  w). The intensitis integrated over Y arc given by the numbers 
attached to the histograms. 

k , M =  V*I 
Figure 3. Dynamical structure factors for the transverse-spin pan S + - ( k , w )  with 
w = 0.2333, as a function of h along a line of E .  = k, (constant-w plot). S = f. 
The straight venical lines reprsenl the 6-funclions. whose inlensitis are given by the 
attached numben [ p l ( f k o )  for ko = (17*/160, 17rr/lh0)]. The hislograms represent 
p i ( k ,  w = 0.2333). 

Substituting (3.23) into (3.2), we may express the dynamical structure factor as 

S z ’ ( S , u )  = 2 ( S - A S ) Z N 6 ( k ) 6 ( w ) +  S:f(k,w) (3.25) 

where 

(3.26) 



f l  9 + Figure 4. Diagrams for W(k,  w ) :  (a) the lowest- 
order diagrams to Wlp,lp(k.w); (b) the next-order 

U Ft + &.i~.- :G !?’,p ip:(5,s!; I*\ \-, *he ~~~- n~rl-order ~.-  diazrams to 
Wi,,,zD,(k,w) and W ~ p , l p , ( k , ~ ) .  me solid lines with p p 
and fi p + k represent the unperlurbed Green’s funclions 
G t r ( p ,  w ’ )  and Gt, . (p  + k,  w’ + w).  respectively. The 
solid circles represent the interaction between magnans given 

P p ’  
+ 

!3p’+Z P $  by H1. 

The perturbation theory is used to calculate W ( k , w ) .  For the lowest-order 
diagram (figure 4(a)) ,  we have 
- ( l / r ) I m  W l p , l p ( k , ~ )  = 6 ( w  - e p  - e p t k )  for w > 0. (3.31) 

The other components are zero in this order. For the next-order diagrams (figure 4(b) 
and (c)),  we find 

- ( l /X) lm WI, ,~, , (~, - ,W)[~(W - E p  - e p + h )  - 6(w - eP, - ep#+k)] 

r/lp,lp’(k)/(cp + cp+k - €p’ - € p > + k )  (3.32) 
- (1/*)Im WlP,,,,(k,w) = - ( l / r ) I m  W z p , , , p ( k w )  

- - -6(w - e p  - ep+k)%p,2p,(k)/(cp + Ep+k f cp’ f ep*+k) (3.33) 
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with 

- p ’ )  + 2 ~ p , l p 4 ~ ) / ( € p  + €p+k - Ep, - Ep,+k) 

(3.36) 

E 
- 2KP,ZP’(k)/(EP + EP+L + Epl + €p,+k)]. 

In the last factor of (3.36), the first term may be called the first-order contribution, 
and the second and the third terms may be called the second-order contribution, 
since they correspond to the corrections of order 1/(2S) and of order ll(2.S)’ to 
S’”(k,w),  respectively. The sum over p’ for the second term is performed in such 
a way as to give Cauchy’s principal value. Note that S:,:(k,w) is non-zero only for 
w 2 E*, and increases as 1/ I k I with I k (i 0 for w close to the threshold energy 

We evaluate (3.36) by summing 25600 points of p and p’ in t h e  first Brillouin zone. 
Figure 5 shows S z z ( k , w )  thus evaluated for S = f with k = (17?r/160,17rr/160) 
and k = (129rr1/160,129n/160), as a function of w (constant-k plot). The first-order 
contribution is dominant for small 1 k I, and its integrated intensity decreases with 
increasing I k 1 and w. The secondader  correction, which is negative, becomes 
important for large I 6 1 and w, indicating that the the convergence of the 1 / S  
expansion becomes poor in this region. Figure 6 shows S z 2 ( k , w )  for S = f 
with w = 0.2333 as a function of k along a line of k, = k, (constant-w plot). 
There appears considerable intensity around k = 0. This arises from the first-order 
contribution, while the secondader  contribution is very small around le = 0, due to 
a partial cancellation between the second and third terms in the last factor of (3.36). 

‘k. 

4. Instantaneous spin-cormlation functions 

The instantaneous spin-correlation functions are calculated by integrating the 
dynamical structure factors with respect to frequenv w: 
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0 0 1  

L/.(= k , / " )  

Figure 5. Dynamical slruucture factors far Flgure 6. Dynamical slmct~re factors for the 
the longitudinal-spin part S " ( k , w )  with k = longiludinal-spin part S " ( k , w )  with w = 0.2333, 
(17rr/160, 17rr/160) and with k = (129s/lh0, as a funclion of k along a line of k, = k, 
129rr/160), as a function of w (constant-k plol). (conslanl-Y plot). S = f .  Histograms a and 
S = f. Ihe histograms with lelten 'FIRST b represent the firslader and the second-oder 
represent the firstader contributions. while the cont~bulions, respectively. 
histograms with letters 'SECOND represen1 the 
second-order contribulions. 

The explicit expression for the last term in (4.1) is given by geting rid of the factor 
6(w - E - E - from (3.22). We evaluate (4.1) and (4.2) by summing 6400 
points of p and p' in the first Brillouin zone. Figure 7 shows S+-(k) and S " " ( k )  
thus evaluated for S = i: curves Q and b represent S+-(k) in lowest order and 
up  to second order in 1/(2S), respectively, while curves c and d represent S z z ( k )  
evaluated to first order and up to second order in 1/(2S), respectively. Note that the 
spin correiations are suppressed by tne secondader  correcriuns in boiii iiic irardv=rSc 
and longitudinal-spin parts. Figure 8 shows the spherically averaged spin-correlation 
function S(k) [E S+-(k) + Szz(k)] for S = i. To lowest order in 1/(2S) ,  S(k) 
is given by the LSW value, i.e., 2S( tk  - mr)2  when 1 k I# 0. Up to order 1/(2S)', 
the value remains very close to  the LSW values, since the reduction caused by the 
secondader  correction in S+-(k) is mostly compensated by S*'(k). This result is 
consistent with the calculations by the variational method and by exact diagonalization 
for finite clusters, which gives values very close to the LSW theory (121. 

P P  

5. Concluding remarks 

We have calculated the dynamical structure factors up to order 1/(2S)' in the 1 / S  
expansion, by using the Holstein-Primakoff transformation. The contributions of 
order 1 / (2S)2  are found, on the whole, not to be large, indicating that the 1/S 
expansion is a good asymptotic expansion for dynamical quantities. This result 
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(1. b : S+-(k) 

c. d :  S"(k) 

d 

0 0.5 I .o 
k./=(= k+I 

Figure 1. Instantaneous spin-correlation functions. 
Culves a and 8 represent the lawgt-order values 
and the values up to order l/(ZS)z for S + - ( k ) .  
Culves c and d represent the fint-order value 
and the values up 10 order 1/(2S)* for S"(k) ,  
respectively. 

a: LSU' 

b u p  to 
the second order 

I . . .  
0 0.5 1.0 

bhi= WI 
Figurc 8. Instantaneous spin-correlation function 
for the spherically-averaged part S ( k )  = , S t - ( k )  
+Sz ' (k ) .  Curve a represents the lowest-order 
values, and culve b represents the values summed 
to order 1/(2S)'. 

is consistent with the fact that the contributions of order 1/(2S)z are small for 
thermodynamic quantities [4-7]. Although its intensity is not large, a broad peak of 
sideband was found in S f - ( h ,  w).  This arises from non-linearity of the second-order 
contributions. Such a non-linear effect might be responsible for the high-frequency 
tail found in two-magnon Raman-scattering spectra in La,CuO, [16]. For S""(k, w) ,  
the leading term is of order 1/(2S), which gave the spectral shape composed of 
the energy continuum of two-magnon excitations as a function of frequency. The 
shape was found to be noticeably modified by the magnon-magnon scattering in the 
secondader  contributions We expect that the deviation from the LSW values could 
be Observed by future neutron scattering experiment$. 

We have also calculated the instantaneous spin-correlation functions. We found 
again that the leading-order contributions in both the transverse and the longitudinal 
spin parts are considerably reduced by the second-order contributions. On the 
other hand, as already pointed out by the present author and Watabe [4], when 
the functions are averaged over the spin directions for S = i, the second-order 
correction to S+-(k) are nearly cancelled out by S z z ( k ) ,  making the averaged 
values very close to the LSW values, consistent with Monte Carlo calculations [2] and 
exact diagonalization for finite clusters [12]. If the transverse and the longitudinal 
components are separately measured, the deviations from the LSW values could be 
observed. 
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